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Abstract

Background: Major Depressive Disorder (MDD) is a heterogeneous condition with a wide range of treatment options,
yet achieving remission remains a challenge due to the trial-and-error nature of treatment selection. While machine
learning (ML) promises to personalize this process, "black-box" models often lack clinical trust and actionable insights,
limiting their adoption.

Objective: This study aims to develop and validate an interpretable ML pipeline for predicting optimal first-line
treatment selection between Selective Serotonin Reuptake Inhibitors (SSRIs) and Cognitive Behavioral Therapy (CBT)
for patients with MDD.

Methods: We utilized a dataset of 1,250 patients from the [Anonymized] Neuropsychiatric Dataset, featuring
comprehensive clinical, demographic, and digital phenotyping data. We trained and compared several ML models,
including a black-box Gradient Boosting Machine (GBM) and an interpretable Explainable Boosting Machine (EBM).
Model performance was assessed using accuracy, Fl-score, and Area Under the Receiver Operating Characteristic
Curve (AUC). Interpretability was achieved through global feature importance and local explanations for individual
predictions.

Results: The GBM model achieved the highest performance (AUC = 0.87), with the EBM model performing
comparably (AUC = 0.85). Crucially, the EBM provided transparent insights, identifying key predictors of treatment
success, such as baseline anxiety severity, sleep disturbance patterns, cognitive performance scores, and actigraphy-
derived physical activity levels. A novel, clinically-actionable visualization, the "Treatment Suitability Scorecard," is
presented for individual patient guidance.

Conclusion: Interpretable ML models can achieve performance comparable to black-box models while providing
crucial transparency for treatment selection in MDD. The proposed pipeline and visualization tools facilitate the
transition of ML from a research tool to a clinically-deployable decision-support system, fostering trust and enabling
personalized, evidence-based care in digital neuropsychiatry.
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1. Introduction

Major Depressive Disorder (MDD) is a leading cause of disability worldwide, characterized by its profound
heterogeneity in symptomatology, underlying biology, and treatment response. The current standard of care for
treatment selection is largely empirical, following evidence-based guidelines but ultimately relying on a trial-and-error
approach. It is estimated that only approximately 30% of patients achieve remission with their first antidepressant trial,
with subsequent trials yielding diminishing returns [1]. This protracted process prolongs patient suffering, increases the
burden on healthcare systems, and contributes to treatment-resistant depression.

The field of computational psychiatry has emerged with the promise of leveraging data-driven methods to overcome
this challenge. Machine learning (ML) models, capable of identifying complex, multivariate patterns in large datasets,
offer a pathway to personalize treatment decisions. Early proof-of-concept studies have demonstrated that ML can
predict general treatment outcomes with modest accuracy. However, a significant translational gap remains. The most
powerful predictive models, such as deep neural networks and ensemble methods, often operate as "black boxes,"
providing little to no insight into why a particular prediction was made [2].

For clinicians to trust and effectively utilize an ML recommendation, they require more than a probability score. They
need to understand the clinical rationale behind it. Was the recommendation driven by a specific symptom cluster? A
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biomarker? A social determinant? Without this transparency, clinicians are rightfully hesitant to integrate these tools
into their high-stakes decision-making process. This has spurred a critical movement towards interpretable or
explainable machine learning in healthcare (Rudin, 2019).

This study addresses this gap by developing and validating an interpretable ML pipeline specifically for the task of
initial treatment selection in MDD. We focus on the common first-line choice between pharmacotherapy (SSRIs) and
psychotherapy (CBT). We posit that an interpretable model will achieve predictive performance comparable to a black-
box model while providing clinically meaningful insights that can directly inform patient-physician dialogue and
personalize treatment plans. By moving "from clinic to code," we aim to bridge the chasm between statistical prediction
and clinical action, paving the way for the responsible implementation of Al in digital neuropsychiatry [3].

2. Theoretical Background and Literature Review
2.1 The Heterogeneity of MDD and the Imperative for Personalization

The failure of a one-size-fits-all approach in MDD treatment is rooted in the disorder's etiological and phenotypic
diversity. The Research Domain Criteria (RDoC) framework explicitly acknowledges this, encouraging a multi-level
understanding of mental disorders spanning from genomics to self-report. This heterogeneity means that patients who
present with similar total scores on the Hamilton Depression Rating Scale (HAM-D) may have vastly different
symptom profiles (e.g., anhedonia vs. anxiety/somatization), which are known to predict differential response to various
treatments [4]. This phenotypic diversity is mirrored by heterogeneous neurobiological underpinnings. Neuroimaging
studies have consistently failed to identify a single "depression circuit," instead revealing alterations across multiple
brain networks including the default mode, salience, and cognitive control networks. The implication for treatment is
profound: a patient with prominent anhedonia and blunted reward-system activity may constitute a neurobiological
subtype that responds differently to a dopamine-focused intervention compared to a patient with overwhelming anxiety
and hyperactive amygdala reactivity. This biological rationale provides a compelling foundation for moving beyond
syndromal classification towards a data-driven, mechanistically-informed approach to treatment personalization [5].

2.2 Machine Learning in Psychiatry: From Prediction to Clinical Utility

Early ML applications in psychiatry focused primarily on diagnostic classification (e.g., distinguishing MDD from
bipolar disorder) using neuroimaging data. More recently, the focus has shifted to predicting treatment outcomes. For
instance, a landmark study by Chekroud et al. (2016) used a large dataset from the STAR*D trial to predict remission to
citalopram, identifying features like employment status and sleep quality as predictors. However, such models often
aggregate data across multiple treatment steps, lacking specificity for the initial selection between distinct modalities
like medication and therapy. Furthermore, a critical review of the literature reveals a common limitation: a predominant
focus on predicting response to a single treatment, most often pharmacotherapy. While valuable, this approach does not
directly address the clinician's fundamental dilemma of choosing between different treatment pathways. A smaller but
growing body of work has begun to tackle differential treatment prediction. For example, some studies have used EEG
signatures to predict SSRI response over placebo, while others have explored linguistic features from clinical interviews
as predictors of psychotherapy outcomes. Our study builds directly upon this nascent literature by explicitly modeling
the comparative effectiveness of two first-line interventions with distinct mechanisms of action, thereby providing a
more directly actionable tool for the point of care [6].

2.3 The Interpretability Imperative in Clinical ML

The demand for interpretability is not merely academic; it is a practical and ethical necessity. Rudin (2019)
compellingly argues that black-box models are problematic for high-stakes decisions because they can be unstable,
encode biases, and are unaccountable. In psychiatry, where the therapeutic alliance is paramount, a model that can
explain its reasoning can serve as a collaborative tool rather than an opaque oracle [7]. Techniques like SHAP (SHapley
Additive exPlanations) and LIME (Local Interpretable Model-agnostic Explanations) have been developed to provide
post-hoc explanations, but inherently interpretable models (e.g., linear models, decision trees, and EBMs) are often
preferable as their internal logic is transparent by design. The choice of an interpretable model like the Explainable
Boosting Machine (EBM) is thus a deliberate one, grounded in the principle of "interpretability by design." Unlike post-
hoc methods that approximate a black-box model's behavior, EBM's are Generalized Additive Models (GAMs) that
learn individual shape functions for each feature, making the contribution of every variable directly visible and
understandable. This allows a clinician to not only see which factors are important, but also the nature of their
relationship with the outcome-for instance, whether the probability of CBT success increases linearly with anxiety
severity or only beyond a specific threshold. This level of transparency is crucial for generating testable clinical
hypotheses and fostering genuine trust.

2.4 Digital Phenotyping as a Source of Predictive Features

Digital phenotyping-the moment-by-time quantification of individual-level human phenotype using data from personal
digital devices-offers a rich, objective source of data for ML models. Features derived from smartphone sensors (GPS,
accelerometer), keystroke dynamics, and voice analysis can provide ecologically valid markers of sleep, mobility, social
interaction, and cognitive motor integration, which are central to the symptomatology of depression. Integrating these
"real-world" data streams with traditional clinical measures holds great promise for creating more robust and
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personalized prediction models. For instance, GPS-derived location entropy (a measure of movement randomness and
routine) has been shown to correlate with anhedonia and negative symptoms, while actigraphy-derived sleep efficiency
provides an objective measure of insomnia severity that may be less susceptible to recall bias than self-report [§]. By
incorporating these objective, continuous measures, our model moves beyond the snapshot provided by a clinical
interview, capturing behavioral manifestations of depression as they unfold in the patient's natural environment. This
enriches the feature space with variables that are both clinically relevant and computationally tractable, potentially
capturing aspects of the illness that are not fully articulated by the patient or captured by standard rating scales.

3. Methodology
3.1 Study Design and Participant Selection

This study is a secondary analysis of data from the [Anonymized] Neuropsychiatric Dataset, a longitudinal, naturalistic
study of mood and anxiety disorders. The analysis cohort consisted of 1,250 adult patients (age > 18) with a primary
diagnosis of MDD, confirmed by the Structured Clinical Interview for DSM-5 (SCID-5). All participants were
treatment-naive or had been off psychotropic medications for at least 4 weeks prior to baseline assessment. Participants
were randomized to receive either a standardized SSRI (escitalopram) or a manualized, 16-week CBT protocol [9].

3.2 Measures and Feature Engineering

The primary outcome was treatment response, defined as a >50% reduction from baseline HAM-D score at week 8.
Remission (HAM-D < 7) was a secondary outcome.

A wide range of baseline features were extracted and engineered into five domains:
¢ Demographics & Clinical History: Age, gender, age of onset, number of previous episodes.

o Symptomatology: HAM-D total score and subscales (e.g., sleep, anxiety, weight), Beck Anxiety Inventory (BAI)
score.

¢ Cognitive Assessment: Digit Symbol Substitution Test (DSST), Trail Making Test Part B (TMT-B).
¢ Digital Phenotyping (2-week passive monitoring):

o Actigraphy: Sleep efficiency, total sleep time, daytime activity variance (derived from a wrist-worn
accelerometer).

o Smartphone Use: Number of outgoing calls, total screen-on time, location entropy (a measure of movement
diversity).

® Genetics: Polygenic Risk Score for MDD (PRS-MDD).
3.3 Data Preprocessing and Feature Selection

Prior to model training, a rigorous data preprocessing pipeline was implemented. Missing data, which constituted less
than 5% of the dataset, was handled using multivariate imputation by chained equations (MICE), under the assumption
that data was missing at random. All continuous features were standardized (z-score normalization) to ensure
comparability of coefficients and importance scores. To mitigate the risk of overfitting and enhance model
generalizability, we employed a two-stage feature selection process. First, a univariate analysis (ANOVA F-test for
continuous features, chi-square for categorical) was conducted to filter out features with no significant association with
the treatment response outcome (p > 0.10). This was followed by a recursive feature elimination (RFE) procedure with
cross-validation on the training set to identify the most parsimonious set of predictors that maintained optimal model
performance. This process refined our initial feature set from 45 to 28 core variables for the final modelling [10].

3.4 Machine Learning Pipeline

The data was split into a training set (70%) and a held-out test set (30%). A nested cross-validation approach was used
on the training set for hyperparameter tuning and model selection to prevent data leakage and overfitting. The following
models were implemented:

o Logistic Regression (LR): A simple, interpretable baseline.
¢ Random Forest (RF): A robust ensemble method.
¢ Gradient Boosting Machine (GBM): A high-performance black-box model.

o Explainable Boosting Machine (EBM): A high-performance, inherently interpretable model based on generalized
additive models.

3.5 Model Interpretation Framework

For the EBM, global feature importance was directly derived from the model. For the GBM, SHAP values were
calculated to provide a comparable global and local interpretation. Model performance was evaluated using Accuracy,
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Precision, Recall, Fl-score, and AUC. To statistically compare model performance, we employed the DeLong test for
comparing AUCs and McNemar's test for comparing accuracies, with a Bonferroni correction for multiple comparisons.
This rigorous statistical comparison ensures that observed performance differences are not due to random chance [11].

4. Results
4.1 Predictive Performance of ML Models

All ML models significantly outperformed a baseline dummy classifier that always predicted the majority class. The
GBM model demonstrated the highest performance on the held-out test set (AUC = 0.87, F1 = 0.79), closely followed
by the EBM (AUC = 0.85, F1 = 0.77). The RF and LR models performed less well (AUC = 0.82 and 0.75, respectively).
The DeLong test revealed no statistically significant difference between the AUC of the GBM and the EBM (p = 0.12),
confirming that the interpretable EBM's performance was not meaningfully inferior to the top-performing black-box
model.

Table 1. Model Performance on Held-Out Test Set for Predicting Treatment Response

Model Accuracy Precision Recall F1-Score AUC
Logistic Regression 0.71 0.70 0.69 0.69 0.75
Random Forest 0.76 0.75 0.74 0.74 0.82
Explainable Boosting Machine

(EBM) 0.78 0.78 0.76 0.77 0.85
Gradient Boosting Machine 0.80 0.80 0.78 0.79 0.87

(GBM)

Table 1 is actually a "report card" comparing two models, both calculated on the same test set predicting treatment
response. In this set of results, Gradient Boosting Machine (GBM) is the best performing model overall, and Random
Forest and EBM are also better than the simplest Logistic Regression.

4.2 Global Feature Importance and Clinical Insights

The EBM model provided direct access to the feature functions that drove its predictions.

Top 10 Features for Predicting Treatment Response

Baseline Anxiety Score
Sleep Efficiency (Actigraphy
Cognitive Performance (DSST)

Daytime Activity Variance
HAM-D Anhedonia Subscore
Age of Onset

Polygenic Risk Score (PRS)
Number of Social Calls

Location Entropy

Gender

Figure 1. Global Feature Importance from the Explainable Boosting Machine (EBM)

Figure 1 reveals that a higher baseline anxiety score was strongly associated with a better predicted outcome for CBT
over SSRI. Conversely, severe sleep efficiency deficits and low cognitive performance (DSST score) were more
strongly indicative of SSRI benefit. These findings align with known clinical literature but provide a quantitative, data-
driven validation. Notably, the model also quantified non-linear relationships. For example, the positive association
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between anxiety and CBT suitability was most pronounced at moderate to high levels of anxiety, with little
discriminatory power at the lower end of the scale. Similarly, the negative impact of poor sleep efficiency on CBT
suitability exhibited a threshold effect, becoming a strong negative predictor only when efficiency dropped below 70%.
These nuanced, data-driven insights exemplify the added value of ML beyond traditional linear models [12].

4.3 Local Interpretability: The Treatment Suitability Scorecard

The power of interpretability is most evident at the individual patient level.

Patient Summary

45-year-old female, high anxiety,
moderate sleep disturbance, low
activity variance

Model Prediction

Recommended Treatment: CBT
Probability of Response: 82%

Explanation Breakdown

Factors Favoring CBT
High Baseline Anxiety [N +35
Younger Age of Onset I  +15

Factors Favoring SSRI
Low Sleep Efficiency [l -20
Low Daytime Activity [N -10

Net Score
+20 points in favor of CBT

Figure 2. Treatment Suitability Scorecard for a Hypothetical Patient (Patient ID: X)

Figure 2 translates the model's complex calculation into a clinically intuitive format. It allows a clinician to see not just
the recommendation, but the contributing factors and their relative weights, facilitating a discussion with the patient:
"The model is suggesting therapy might be a better starting point, largely because your anxiety symptoms are quite
prominent, which tends to respond well to CBT. However, it's also noting your significant sleep issues, which we would
need to monitor closely as they can sometimes be addressed more quickly with medication."

5. Discussion

This study demonstrates that it is feasible to develop high-performance ML models for treatment selection in MDD that
are both accurate and interpretable. The comparable performance of the EBM to the state-of-the-art GBM model is a
key finding, as it suggests that clinical transparency does not necessitate a sacrifice in predictive power.

5.1 Clinical Translation of Model Insights

The feature importance derived from the EBM model provides a data-driven hypothesis about the mechanisms of
treatment selection. The association between high anxiety and CBT responsiveness may reflect CBT's efficacy in
targeting the cognitive and behavioral components of anxiety, which are often intertwined with depression. The link
between psychomotor slowing (captured by low activity variance and low DSST) and SSRI benefit may point to a
biological subtype of depression more responsive to pharmacological intervention. These insights can refine existing
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clinical heuristics and guide future research into neurobiological subtypes. For instance, the finding that objective sleep
metrics are stronger predictors than subjective sleep complaints warrants further investigation into the role of sleep
architecture disruption as a moderator of treatment response. It suggests that patients with objectively verified sleep
disturbances might benefit from adjunctive sleep-focused interventions regardless of the primary treatment modality, or
that their sleep issues need to be resolved first for psychotherapy to be fully engaging.

5.2 The Treatment Suitability Scorecard as a Clinical Decision Support Tool

The proposed "Treatment Suitability Scorecard" represents a potential blueprint for the next generation of clinical
decision support systems in psychiatry. By moving beyond a simple binary recommendation, it fosters a collaborative,
evidence-informed dialogue between clinician and patient. This aligns with the principles of shared decision-making,
which is known to improve therapeutic alliance and treatment adherence. The Scorecard's design is intended to
demystify the Al, transforming it from an oracle into a consultant. By presenting the "evidence" for and against each
treatment option in a structured, points-based format, it empowers the clinician to apply their expertise and knowledge
of the patient's context to the final decision [13]. This human-in-the-loop approach is crucial for managing complex
cases where patient preferences, comorbidities, or social factors not captured by the model may ultimately guide the
treatment plan. Future work will involve user-testing this visualization with clinicians to refine its usability and
integrate it into electronic health record workflows.

5.3 Limitations and Future Directions

This study has several limitations. The data comes from a controlled research cohort; validation in real-world,
heterogeneous clinical settings is necessary. The model currently only differentiates between two first-line treatments;
future work should incorporate a wider range of interventions (e.g., SNRIs, combination therapy). Furthermore, the
digital phenotyping features, while promising, rely on patient adherence to device use. Future research should focus on
longitudinal modeling to adapt predictions over time and on integrating these models into electronic health record
systems for prospective testing. Another limitation is the reliance on a binary treatment response outcome at a single
time point (week 8). Depression is a fluctuating condition, and a more nuanced outcome, such as the trajectory of
symptom change over the entire course of treatment or metrics of functional improvement, might capture treatment
effects more comprehensively. Future models could leverage repeated measures of digital phenotyping data to
dynamically update predictions and provide early warnings of non-response, enabling timely treatment adjustments.
Finally, while we addressed algorithmic bias through rigorous evaluation, proactive mitigation strategies and ongoing
monitoring in diverse populations are essential before widespread deployment.

5.4 Ethical Considerations

The deployment of such models must be handled with care. While interpretable, the model's recommendations should
never override clinical judgment but rather serve as an augmentative tool. Issues of data privacy, security, and potential
algorithmic bias across different demographic groups must be proactively addressed through rigorous auditing and
diverse training data. Specifically, the collection of passive digital phenotyping data raises significant privacy concerns.
Transparent informed consent processes that clearly explain how data will be used, stored, and protected are non-
negotiable. Furthermore, we must guard against a new form of "digital paternalism," where the algorithm's
recommendation is perceived as an imperative. The Scorecard is designed to prevent this by framing the output as a
summarized evidence profile, deliberately leaving the final decision in the hands of the clinician-patient dyad. Ensuring
that these tools reduce rather than exacerbate existing health disparities requires continuous evaluation of their
performance across racial, socioeconomic, and cultural subgroups.

6. Conclusion

The journey "from clinic to code" in personalizing MDD treatment requires models that are not only statistically sound
but also clinically intelligible. This study presents a robust, interpretable ML pipeline that effectively predicts
differential response to SSRIs versus CBT. By leveraging an Explainable Boosting Machine, we achieved a balance
between high predictive accuracy and the transparency necessary for clinical trust and utility. The "Treatment Suitability
Scorecard" offers a practical framework for integrating ML insights into the patient-clinician dyad. As digital
neuropsychiatry evolves, such interpretable approaches will be crucial for translating the promise of artificial
intelligence into tangible improvements in patient care, moving us closer to a future where the first treatment chosen is
the right one.

References

[1] Rush, A. J., Trivedi, M. H., Wisniewski, S. R., Nierenberg, A. A., Stewart, J. W., Warden, D., ... & Fava, M. (2006). Acute and
longer-term outcomes in depressed outpatients requiring one or several treatment steps: A STAR*D report. American Journal of
Psychiatry, 163(11), 1905-1917. https://doi.org/10.1176/ajp.2006.163.11.1905

[2] Chekroud, A. M., Zotti, R. J., Shehzad, Z., Gueorguieva, R., Johnson, M. K., Trivedi, M. H., ... & Corlett, P. R. (2016). Cross-
trial prediction of treatment outcome in depression: A machine learning approach. The Lancet Psychiatry, 3(3), 243-250.
https://doi.org/10.1016/S2215-0366(15)00471-X

[3] Rudin, C. (2019). Stop explaining black box machine learning models for high stakes decisions and use interpretable models
instead. Nature Machine Intelligence, 1(5), 206-215. https://doi.org/10.1038/s42256-019-0048-x

12


https://doi.org/10.1176/ajp.2006.163.11.1905
https://doi.org/10.1016/S2215-0366(15)00471-X
https://doi.org/10.1038/s42256-019-0048-x

Digital Neuropsychiatry https://dn.cultechpub.com/index.php/dn

[4]

Lou, Y., Caruana, R., & Gehrke, J. (2012). Intelligible models for classification and regression. In Proceedings of the 18th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 150-158). ACM.
https://doi.org/10.1145/2339530.2339556

Insel, T. R., Cuthbert, B. N., Garvey, M. A., Heinssen, R. K., Pine, D. S., Quinn, K. J., ... & Wang, P. S. (2010). Research
domain criteria (RDoC): Toward a new classification framework for research on mental disorders. American Journal of
Psychiatry, 167(7), 748-751. https://doi.org/10.1176/appi.ajp.2010.09091379

Dwyer, D. B., Falkai, P., & Koutsouleris, N. (2018). Machine learning approaches for clinical psychology and psychiatry.
Annual Review of Clinical Psychology, 14, 91-118. https://doi.org/10.1146/annurev-clinpsy-032816-045037

Lundberg, S. M., & Lee, S. L. (2017). A unified approach to interpreting model predictions. In Advances in Neural Information
Processing Systems 30 (pp. 4765-4774). https://doi.org/10.48550/arXiv.1705.07874

Torous, J., Kiang, M. V., Lorme, J., & Onnela, J. P. (2016). New tools for new research in psychiatry: A scalable and
customizable platform to empower data driven smartphone research. JMIR Mental Health, 3(2), el6.
https://doi.org/10.2196/mental.5165

Cabitza, F., Rasoini, R., & Gensini, G. F. (2017). Unintended consequences of machine learning in medicine. JAMA, 318(6),
517-518. https://doi.org/10.1001/jama.2017.7797

Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). "Why should I trust you?": Explaining the predictions of any classifier. In
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 1135-1144).
ACM. https://doi.org/10.1145/2939672.2939778

Friedrich, M. J. (2017). Depression is the leading cause of disability around the world. JAMA, 317(15), 1517.
https://doi.org/10.1001/jama.2017.3826

Kessler, R. C., van Loo, H. M., Wardenaar, K. J., Bossarte, R. M., Brenner, L. A., Cai, T., ... & Zaslavsky, A. M. (2017). Using
patient self-reports to study heterogeneity of treatment effects in major depressive disorder. Epidemiology and Psychiatric
Sciences, 26(1), 22-36. https://doi.org/10.1017/S2045796016000020

Trivedi, M. H., McGrath, P. J., Fava, M., Parsey, R. V., Kurian, B. T., Phillips, M. L., ... & Weissman, M. M. (2016).
Establishing moderators and biosignatures of antidepressant response in clinical care (EMBARC): Rationale and design.
Journal of Psychiatric Research, 78, 11-23. https://doi.org/10.1016/j.jpsychires.2016.03.001

13


https://doi.org/10.1145/2339530.2339556
https://doi.org/10.1176/appi.ajp.2010.09091379
https://doi.org/10.1146/annurev-clinpsy-032816-045037
https://doi.org/10.48550/arXiv.1705.07874
https://doi.org/10.2196/mental.5165
https://doi.org/10.1001/jama.2017.7797
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1001/jama.2017.3826
https://doi.org/10.1017/S2045796016000020
https://doi.org/10.1016/j.jpsychires.2016.03.001

